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Outline

• Review of Fourier approximations for smooth(periodic) functions.

• Piecewise smooth functions - practical computational data.

• Adaptive Mollifiers for the high order resolution of Gibbs’ Phenomena.

- error analysis → exponential accuracy for piecewise analytic, numerics
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• Adaptive Filters

- overview of error analysis, numerics



Global(Periodic) Regularity and High Resolution

Spectral Convergence Rate, Cs

|SNf(x) − f(x)| ≤ Const‖f‖Cs ·
1

Ns−1
∀s

� ‖f‖Cs := max[−π,π] |f(s)|
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Global(Periodic) Regularity and High Resolution

Spectral Convergence Rate, Cs

|SNf(x) − f(x)| ≤ Const‖f‖Cs ·
1

Ns−1
∀s

� ‖f‖Cs := max[−π,π] |f(s)|

Exponential Convergence Rate, Analytic

|SNf(x) − f(x)| ≤ Constη ·Ne−Nη ⇔ ‖f‖Cs ≤ Const · s!
ηs

Behavior of f(·) off the real axis determines η.

• Convergence rate as fast as Global smoothness permits.

• What about f ∈ C∞ non-analytic? Gevrey regularity.



What about Spectral Convergence for C∞?

ρ(x) =







exp

(

(πx)2

x2−π2

)

|x| < π

0 |x| ≥ π.
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Between exponential(Analytic) and spectral(Cs) is Gevrey Regularity,
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Between exponential(Analytic) and spectral(Cs) is Gevrey Regularity,

ρ(·) is Gevrey regular of order 2, ρ(s) ∼ (s!)2,

|SNρ− ρ| ≤ Constηρ ·Ne−2
√
ηρN .

Fractional power exponential convergence.

|SNψ − ψ| ≤ Constη ·Nα/2e−α(ηN)1/α ⇔ ‖ψ‖Gα ≤ Const · (s!)
α

ηs



Gibbs’ Phenomena and Filtered Reconstruction

f(x) =

{

sin(x/2) x ∈ [0, π)
− sin(x/2) x ∈ [π,2π)
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• High order reconstruction with Gibbs’ Phenomena removed.



Methods for discontinuous data

Local Smoothness, fixed polynomial order

• Splines
• Wavelets
• WENO











PNf − f ∼ O
(

1
Nr

)

fixed r

Semi-Global Smoothness, spectral accuracy

• Gegenbauer
• Filters/Mollifiers

}

PNf − f ∼ Cs
1
Ns , ∀s



Methods for discontinuous data

Local Smoothness, fixed polynomial order

• Splines
• Wavelets
• WENO











PNf − f ∼ O
(

1
Nr

)

fixed r

Semi-Global Smoothness, spectral accuracy

• Gegenbauer
• Filters/Mollifiers

}

PNf − f ∼ Cs
1
Ns , ∀s

Filtering and Mollification are essentially interchangeable,

∑

|k|≤N
σ

(

|k|
N

)

f̂ke
ikx ⇔ φ ∗ SNf(x)

Dual Space Physical Space

� When to filter in dual space or mollify in physical space?

� Computationally more efficient to stay is the space of given data.



Canonical Polynomial Order Mollifiers

• One-parameter compactly supported, (−π, π), functions.

ψθ(x) :=
1

θ
ψ

(

x

θ

)

, −πθ ≤ x ≤ πθ
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• Convergence order as fixed number of exactly vanishing moments

∫ d
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• Local |f − f ∗ ψθ| ≤ θr
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‖f(r)‖L∞(x−πθ,x+πθ)



Canonical Polynomial Order Mollifiers

• One-parameter compactly supported, (−π, π), functions.

ψθ(x) :=
1

θ
ψ

(

x

θ

)

, −πθ ≤ x ≤ πθ

• Convergence order as fixed number of exactly vanishing moments

∫ d

−d
xjψθ(x)dx = δj,0 j = 0,1,2, . . . , r − 1.

• Local |f − f ∗ ψθ| ≤ θr

πr(r+1)!
‖f(r)‖L∞(x−πθ,x+πθ)

• Error decreases at fixed polynomial order(θr), θ ↓ 0.

• Recover from SNf(·) requires similar order regularity, ψ ∈ Cr.

• Inherent small scale introduced by projection(sampling), h ∼ 1/N .



Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:

ψp,θ(x) :=
1

θ
ρ

(

x

θ

)

Dp

(

x

θ

)

� ρ(·), our G2
0 localizer ρ(x) =







exp

(

(πx)2

x2−π2

)

|x| < π

0 |x| ≥ π.

� Dp(·), Dirichlet Kernel Dp(x) =
sin(p+1/2)x
2π sin(x/2)



Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:

ψp,θ(x) :=
1

θ
ρ

(

x

θ

)

Dp

(

x

θ

)

� ρ(·), our G2
0 localizer ρ(x) =







exp

(

(πx)2

x2−π2

)

|x| < π

0 |x| ≥ π.

� Dp(·), Dirichlet Kernel Dp(x) =
sin(p+1/2)x
2π sin(x/2)

• Cancellation: ψp,θ possesses p near vanishing moments.

∫ πθ

−πθ
xjψp,θ(y)dy = δj0 + Cj · p−(j−1), ∀j ≤ p

• Unlike traditional mollifiers, dilation parameter as large as allowable



Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, SNf(·),
or equidistant sampling INf(·).

Error composed of two terms:

Error := ψp,θ ∗ SNf(x) − f(x)

≡ (f ∗ ψp,θ − f) + (SNf − f) ∗ (ψp,θ − SNψp,θ)
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Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, SNf(·),
or equidistant sampling INf(·).

Error composed of two terms:

Error := ψp,θ ∗ SNf(x) − f(x)

≡ (f ∗ ψp,θ − f) + (SNf − f) ∗ (ψp,θ − SNψp,θ)

• Regularization := (f ∗ ψp,θ − f)

- Controlled by number of near vanishing moments

• Truncation := (SNf − f) ∗ (ψp,θ − SNψp,θ)

- Small due to mollifier regularity, essential dual space localization

Error Analysis:

• The optimal number of near vanishing moments, p.

• Justify selection of dilation parameter, θπ := d(x).



Revisited: Error=Regularization+Truncation

Error Analysis I, Regularization Error

• f(·) analytic in (x− d(x), x+ d(x)) where d(x) distance to discontinuity,

and ρ ∈ G2, therefore gx(y) := f(x+ y)ρd(x)(y) − f(x) is Gevrey order 2.

|Regularization| := |f ∗ ψp,θ − f |
= |Spgx(y) − gx(y)|y=0

≤ Cρ · p · e−2
√
p·ηρ

• Hidden dependence on dilation, θ, in ηρ.



Revisited: Error=Regularization+Truncation

Error Analysis I, Regularization Error

• f(·) analytic in (x− d(x), x+ d(x)) where d(x) distance to discontinuity,

and ρ ∈ G2, therefore gx(y) := f(x+ y)ρd(x)(y) − f(x) is Gevrey order 2.

|Regularization| := |f ∗ ψp,θ − f |
= |Spgx(y) − gx(y)|y=0

≤ Cρ · p · e−2
√
p·ηρ

• Hidden dependence on dilation, θ, in ηρ.

• Dilation parameter, θ, as large as possible such that f(·) analytic in

(x− θπ, x+ θπ) ⇒ θπ := d(x).

• Non-Linear Adaptive Mollification, θ(x) := d(x)/π.

� Symmetric reconstructions must sacrifice accuracy as approaching edges.



Revisited: Error=Regularization+Truncation

Error Analysis II, Truncation error

• Smoothness reflected as dual space localization, (ψ−SNψ), truncation.

• Dirichlet Kernel analytic and ρ ∈ G2 ⇒ ψp,θ(x) Gevrey order 2,

‖ψp,θ(x)‖Cs ≤ Cρ · s ·
(

s2

e2ηθ(x)

)s

epη/s s = 1,2, . . .
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Error Analysis II, Truncation error

• Smoothness reflected as dual space localization, (ψ−SNψ), truncation.

• Dirichlet Kernel analytic and ρ ∈ G2 ⇒ ψp,θ(x) Gevrey order 2,

‖ψp,θ(x)‖Cs ≤ Cρ · s ·
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≤ Const ·
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e2ηθ(x)N

)s

epη/s, ∀s.

θ(x) in denominator dictates ⇒ θ(x) as large as possible.



Revisited: Error=Regularization+Truncation

Error Analysis II, Truncation error

• Smoothness reflected as dual space localization, (ψ−SNψ), truncation.

• Dirichlet Kernel analytic and ρ ∈ G2 ⇒ ψp,θ(x) Gevrey order 2,

‖ψp,θ(x)‖Cs ≤ Cρ · s ·
(

s2

e2ηθ(x)

)s

epη/s s = 1,2, . . .

|Truncation| := ‖(SNf − f) ∗ (ψp,θ − SNψp,θ)‖L∞

≤ Const ·
(

1

N

)s−1

‖ψp,θ(x)‖Cs, ∀s

≤ Const · N
(

s2

e2ηθ(x)N

)s

epη/s, ∀s.

θ(x) in denominator dictates ⇒ θ(x) as large as possible.

Remaining:

• Equilibration of Regularization and Truncation Error.

• The optimal number of near vanishing moments, p.



Error Analysis III, Determination of parameter, p

• Truncation minimized over s when:

log

(

s2minπ

ηNd(x)

)

=
pηc

s2min
⇒ smin ∼

√

η ·Nd(x)

Incorporating this relationship for smin yields

pmin =
s2min
η

·
(

log
s2minπ

ηNd(x)

)

∼ Nd(x)



Error Analysis III, Determination of parameter, p

• Truncation minimized over s when:

log

(

s2minπ

ηNd(x)

)

=
pηc

s2min
⇒ smin ∼

√

η ·Nd(x)

Incorporating this relationship for smin yields

pmin =
s2min
η

·
(

log
s2minπ

ηNd(x)

)

∼ Nd(x)

• Adaptivity: The optimal choice for the number of near vanishing mo-

ments, p, is given as a function of the distance to the nearest discontinuity!

pmin := k ·Nd(x)

k selected to balance Regularization and Truncation errors, k = 0.5596.



Near discontinuities, Normalization

• O(1/N) neighborhood of discontinuity, p ∼ Nd(x) ≈ 1.

• Error for vanishing moments is substantial.

∫ d

−d
yjψp,d(y)dy = Sp ∗ (yjρ(y))

∣

∣

∣

x=0
∼ δj0 + Constj · p−(j−1)

• Visible error near discontinuities (blurring).



Near discontinuities, Normalization

• O(1/N) neighborhood of discontinuity, p ∼ Nd(x) ≈ 1.

• Error for vanishing moments is substantial.

∫ d

−d
yjψp,d(y)dy = Sp ∗ (yjρ(y))

∣

∣

∣

x=0
∼ δj0 + Constj · p−(j−1)

• Visible error near discontinuities (blurring).

• To maintain at least first order accuracy, normalize to unit mass

ψnormN,d(x) :=
ψNd(x)

∫ d
−dψNd(x)dx

.

• Can possess any fixed number of exactly vanishing moments.

• Polynomial convergence near edges and exponential accuracy away.



There are no free parameters

• Exponential Accuracy away from discontinuity, d(x) > O(1/N).

|ψNd(x) ∗ SNf(x) − f(x)| ≤ Cρ ·Nd(x)e−0.845
√
η·Nd(x).

• Explicit reconstruction depending only on the projection order, N , and

the discontinuity locations, d(x).

• Computationally robust due to rapidly decaying localizer, ρ(·).

• Optimal number of near vanishing moments given adaptively by

pmin(N, x) := k ·Nd(x)

• Polynomial order accuracy in O(1/N) neighborhood of discontinuities



Pseudospectral(Equidistant) Recovery

f̂k :=

∫ π

−π
f(x)eikxdx ⇒ f̃k :=

π

N

N−1
∑

ν=−N
f(yν)e

ikyν yν :=
π

N
ν

Exponential accuracy the same order as spectral projection:

∣

∣

∣

∣

∣

∣

π

N

N−1
∑

ν=−N
ψNd(x)(x− yν)f(yν) − f(x)

∣

∣

∣

∣

∣

∣

≤ Constc · (Nd(x))2e−
√
η·Nd(x)

• The pseudospectral coefficients are not needed; only samples f(yν).



Pseudospectral(Equidistant) Recovery

f̂k :=

∫ π

−π
f(x)eikxdx ⇒ f̃k :=

π

N

N−1
∑

ν=−N
f(yν)e

ikyν yν :=
π

N
ν

Exponential accuracy the same order as spectral projection:

∣

∣

∣

∣

∣

∣

π

N

N−1
∑

ν=−N
ψNd(x)(x− yν)f(yν) − f(x)

∣

∣

∣

∣

∣

∣

≤ Constc · (Nd(x))2e−
√
η·Nd(x)

• The pseudospectral coefficients are not needed; only samples f(yν).

• Robust exponentially accurate method to recover intermediate function

values given an equidistant sampling of a piecewise smooth function.

• Accuracy proportional to number of cells to nearest discontinuity.

• Optimal order symmetric reconstruction, contrast with CWENO.

However, this is not Interpolation!



Reconstruction from Spectral Projection

f2(x) =

{

(2e2x − 1 − eπ)/(eπ − 1) x ∈ [0, π/2)
− sin(2x/3 − π/3) x ∈ [π/2,2π)

Reconstruction ψ ∗ S128f(·) Regularization & Truncation errors
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• Balanced decay rate of Regularization and Truncation errors

• Different regularity constants, steep gradient at π
2
−

• Accuracy sacrificed near discontinuities



Reconstruction from equidistant samples

Reconstruction, ψNd(x) ∗ I128f(·) Log of error, N = 32,64,128
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•Exponential convergence away from discontinuity

•Polynomial order accuracy near discontinuity, d(x) = O(1/N)

•Exact physical space localization, sharp resolution of discontinuities



2D Pseudospectral Example

f(x, y) =

{

cos(xy) + 1 4x2 + 16y2 ≤ π2

cos(xy) else

Error with N = 40 N = 80
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• Also treating boundaries as discontinuities, x = ±π, y = ±π.



Summary of Adaptive Mollifiers

• Recovers pointwise function values of piecewise smooth functions given

either its spectral projection, or equidistant sampling.

• No parameters determined by the user, a “Black Box” method.

• Computationally robust and well suited for fast parallel computations.

• Exponentially accurate away from the discontinuity and fixed polynomial

order convergence rate in the O(1/N) neighborhood of edges.



Summary of Adaptive Mollifiers

• Recovers pointwise function values of piecewise smooth functions given

either its spectral projection, or equidistant sampling.

• No parameters determined by the user, a “Black Box” method.

• Computationally robust and well suited for fast parallel computations.

• Exponentially accurate away from the discontinuity and fixed polynomial

order convergence rate in the O(1/N) neighborhood of edges.

• Reconstruction errors a combination of

- near vanishing moments, regularization
- physical space localization
- dual space localization, truncation











⇒ Adaptive Filters



Filters - Classical Polynomial Order

• Piecewise smooth functions, slowly decaying coefficients, f̂k ≤ O(k−1)

• Filters increase convergence order by increasing coefficient decay rate

Filter properties ⇒
{

- smoothness, σ(η) ∈ C
q
0[−1,1]

- accuracy, σ(j)(0) = δj0, j ≤ q − 1
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Filters - Classical Polynomial Order

• Piecewise smooth functions, slowly decaying coefficients, f̂k ≤ O(k−1)

• Filters increase convergence order by increasing coefficient decay rate

Filter properties ⇒
{

- smoothness, σ(η) ∈ C
q
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• Acts on function and its projection the same, dual space localization

fσ(x) ≡ SNf
σ(x) :=

∑

|k|≤N
σ

(

|k|
N

)

f̂ke
ikx

• Error analysis through associated mollifier, acting in physical space

SNf
σ(x) := f ∗ Φ(x) =

∫ π

−π
Φ(y)f(x− y)dy Φ(x) :=

∑

|k|≤N
σ

(

k

N

)

eikx



Error Analysis - Sketch

• Accuracy condition implies a number of near vanishing moments

σ(j)(0) ≡ δj,0 ⇒
∫ d

−d
yjΦ(y)dy ∼ δj,0 j = 0,1,2, . . . , q − 1.

• However, increased filter order, q, decreases localization

• Error composed of competing localization and accuracy errors,

|f(x) − f ∗ Φ(x)| ≤
∣

∣

∣

∣

∣

∫

d(x)<|y|≤π
Φ(y)gx(y)dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|y|≤d(x)
Φ(y)gx(y)dy

∣

∣

∣

∣

∣

where, gx(y) := f(x) − f(x− y).



Error Analysis - Sketch

• Accuracy condition implies a number of near vanishing moments

σ(j)(0) ≡ δj,0 ⇒
∫ d

−d
yjΦ(y)dy ∼ δj,0 j = 0,1,2, . . . , q − 1.

• However, increased filter order, q, decreases localization

• Error composed of competing localization and accuracy errors,

|f(x) − f ∗ Φ(x)| ≤
∣

∣

∣

∣

∣

∫

d(x)<|y|≤π
Φ(y)gx(y)dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|y|≤d(x)
Φ(y)gx(y)dy

∣

∣

∣

∣

∣

where, gx(y) := f(x) − f(x− y).

• Fixed order filters fail to balance accuracy and localization errors

• Optimal filter order is spatially adaptive, balancing competing errors

qmin := (k ·Nd(x))1/α σ ∈ Gα0[−1,1]



Reconstruction with Adaptive Filter

f2(x) =

{

(2e2x − 1 − eπ)/(eπ − 1) x ∈ [0, π/2)
− sin(2x/3 − π/3) x ∈ [π/2,2π)

Reconstruction, S128f
σ(·) |f(x) − SNf

σ(x)|, N = 32,64,128
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Student Version of MATLAB

• Similar accuracy to Adaptive Mollifier

• Computationally fast when given spectral projection



.

Adaptive Mollifiers & Filters

A Powerful tool for manipulating a function’s

spectral projection or equidistant sampling.

Thank you

jtanner@math.ucdavis.edu


